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Company Introduction

© Unique augmented reality in the vehicle
O Ultimately easy and safe driving

O Full visibility of autonomous driving decisions

APOSTERA

Headquarters in Munich

Development centers in Eastern Europe,
presence in Asia

50+ experienced and talented engineers in
4 countries

10+ years of automotive experience

Know-how in core automotive domains:
Vehicle Infotainment, Vehicle Sensors and
Networks, Telematics, Advanced Driver
Assistance Systems, Navigation and Maps,

Collaboration with scientific groups in fields
of Computer Vision and Machine Learning,
unique IP and mathematical talents



Technology

Recognition and Tracking

Computer Vision Approaches

Road boundaries and lane detection * Real-time objects extraction from video sensors

Slopes estimation * Road scene semantic segmentation

Vehicle recognition and tracking

Distance & time to collision estimation
Pedestrian detection and tracking

Facade recognition and texture extraction

Road signs recognition

L7 . .
455 ) Integration with HD Maps

HD Maps utilization for Precise positioning, Map

matching and Path planning, Junction assistance

Data generation for HD Maps

* Adaptability and ¢ gytpyt data confidence

Ol gstimation

* GPU optimization for different platforms

|E3| Augmented Reality
* LCD, HUD & further output devices
* Natural navigation hints & infographics

* Collison, Lane departure,

Blind spots warnings, etc.

* POIs and supportive information (facades and

parking slots highlighting, etc.)

Sensor Fusion

* Flexible fusion of data from internal and external

sources

* LIDAR data merging

* 3D-environment model reconstruction based on

different sensors

* Latency compensation & data extrapolation

Machine Learning Specifics

CNN and DNN approaches
Supervised MRF parameters adjustment

CSP-based structure & parameters adjustment

(both supervised and unsupervised)

Weak classifiers boosting & others




Challenges of ADAS Embedded Platforms

*  Power vs Performance
— Focus on performance while presuming the low power consumption
* Low latency and High response frequency
— Fast responses to environment changes are crucial for working in real-time
*  Robustness and Quality
— Ensure robustness and presume quality in difficult operating conditions
— Requires a lot of verification scenarios as well as adaptive heuristics
*  System architecture specifics for embedded real-time
— Designed for real-time requirements and portability to fit to most effective hardware platforms
* Hardware and software sensor fusion
— Fuse available data sources (sensors, maps, etc.) for robustness and quality
*  Big data analysis
— Huge amount of data should be stored and used for development and testing
* In- and Off-field automated testing
— Adaptive heuristics development
— System validation
— Collecting special cases



Challenges of ADAS Machine Learning

* Machine Learning needs large volumes of quality data
— Real need to ensure greater stability and accuracy in ML

— High volumes of data might not be available for some tasks,
limiting ML's adoption

* Al vs Expectations
— Understanding the limits of technology
— Address expectations of replacing human jobs
* Becoming production-ready
— Transition from modeling to releasing production-grade Al solutions
*  Current ML doesn’t understand context well
— Increased demand for real-time local data analysis
— A need to quickly retrain ML models to understand new data
* Machine Learning security
— Addressing security concerns such as informational integrity




System Concept



Apostera Approach. High Level and Highlights
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Figure — System architecture overview
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Apostera Approach. High Level and Highlights

Hardware agnostic Configurable logic requirements

Vehicle sensors agnostic (including models and regions)
Confidence estimation of fusion/visualization — Userinterface logic considers confidence or
probability of input data

Real-time with low resource consumption _ , , _
— Considers the dynamic environment and objects

Latency compensation and prediction model occlusion logic

— Pitch, roll, low- and high-frequency

Integration with different navigation systems

Configurable design for different OEMs
and map formats

— Compensation of map data inaccuracy

— Precise relative and absolute positioning



Cameras. Transport and Sensors

ADAS camera challenges

Low
latency

Small
footprint

Low power

High
Reliability

IP/ETH AVB / GMSL transport comparison

Frame
exposure

encoder
1ms

IP transmit “105ms
- 1ms N

~37ms

33 ms 70 ms
33 ms - 1ms 2ms - i1ms
45us 15us (perline)

O

Supplier Aptina Aptina Omnivision
Type AR0130 AR0231 OV 10635
Resolution pixel 1280x960 1928x1208 1280x800
Dynamic dB 115 (HDR) 120(HDR) 115(HDR)
Response s 5.48 - 3.65
sec
Frames fps 60 40 30
Shutter Type GSéER ERS ERS ERS
Sensor optical Inch " " ”
i “) 1/3 1/2.7 1/2.7
Pixel size pm 3.75 3 4.2
Interface eI MIPI CSI2 Parallel DVP
RGB
Application ADAS ADAS ADAS
Operation °C -40...4105 -40...4105 -40...+4105
temp.

Table — camera sensors comparison
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Data Preparation. Public Datasets

Desired road object classes:

*  Vehicle

*  Large Vehicle (Truck/Bus)
*  Pedestrian

*  Cyclist / motorcyclist

*  Traffic sign

*  Trafficlight

General road scene annotations:
* Time of day

*  Weather type

* Street type

*  Country

Public datasets for object detection:

* Different annotation formats and classes
*  Noncommercial use or after agreement
*  Good for quick prototyping

scene: city street
: clear

Figure — Public dataset samples




Data Preparation. Simulation ©

P Cons

Faster development cycles Limited physical, perceptual fidelity
Easy scalability Limited behavioral fidelity
Controllability, reproducibility Flexible, but not standardized

Easy data collection (inc. corner cases)

Figure — SYNTHIA and VirtualKITTI datasets




Data Preparation. Real and Simulated Data

Ground truth data sources:

* Raw driving data
— 100x hours of in-field testing

— Challenging manual or semi-automatic
labeling

— Hard to reuse after setup changes

*  Simulated data
— Fast automatic labeling
— Special cases are easier to collect

—  Possible issues with real world
deployment

* Data augmentation
—  Flip, crop, color changes
— Quick dataset extension

—  Prevents model from irrelevant
patterns, improves robustness

Figure — Raw vs simulated data




Object Detection DNN Showcase



Object Detection DNNs. Speed vs Accuracy
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Figure — Accuracy (mAP) vs inference time of different meta architecture / feature
extractor combinations for MS COCO dataset



Single Shot Multibox Detector

*  Discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and
scales per feature map location

*  Generates scores for the presence of each object category in each default box and produces adjustments
to the box to better match the object shape

*  Combines predictions from multiple feature maps with different resolutions to handle various sizes

*  Simple relative to methods that require object proposals, eliminates proposal generation and subsequent
pixel or feature resampling stages, encapsulates all computation in a single network
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Figure — SSD model architecture




MobileNet as a Feature Extractor @

* Streamlined architecture that uses depthwise separable convolutions to build light
weight deep neural networks

 Uses two global hyper parameters to adjust between latency and accuracy
e Strong performance compared to other popular models on ImageNet classification
* Effective across a wide range of applications and use cases

* object detection

e fine grain classification

* face attributes
* large scale geo-localization
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MobileNet Architecture. Convolution Block

3x3 Depthwise Convolution

Batch Normalization

RelLU6

\

1x1 Pointwise Convolution

Batch Normalization

RelLU6

Depthwise Separable
Convolution block

Figure - Depthwise separable convolution block




MobileNet Architecture

Type / Stride Filter Shape Input Size
Conv / s2 b s o Ji e 224 x 224 % 3
Conv dw / sl 3 x 3 x32dw 112 % 112:% 32
Conv / sl 1x1x32x64 112 x 112:% 32
Conv dw / s2 3 x 3 x64dw 112 x 112 x 64
Conv / sl 1x1x64x128 56 x 56 x 64
Conv dw / sl I x 3 x128 dw 56 x 56 x 128
Conv / sl 1x1x128 x 128 56 x 56 x 128
Conv dw / s2 I x3 x128dw 56 x 56 x 128
Conv / sl Ix1x128x 256 28 x 28 x 128
Conv dw / sl 3 x 3 x 256 dw 28 x 28 x 256
Conv / sl 1 x 1 x 256 x 256 28 x 28 x 256
Conv dw / 52 3 x 3 x 256 dw 28 x 28 x 256
Conv / sl 1x1x256 %512 14 x 14 x 256
B Convdw /sl | 3x3x512dw 14 x 14 x 512
Conv /sl 1x1x512%512 14 x 14 x 512
Conv dw /52 3 x 3 x512dw 14 x 14 x 512
Conv / sl 1x1x512x1024 TxT%512
Conv dw / 52 3 %3 x 1024 dw Tx7x1024
Conv / sl 1x1x1024x1024 | 7x 7 x1024
Avg Pool / sl Pool 7 x 7 7x7Tx1024
FC /sl 1024 x 1000 T3 X 1024
Softmax / sl Classifier 1 x1x 1000

Figure — MobileNet architecture




SSD-MobileNet Qualities

Speed vs Accuracy:
* SSD on MobileNet has the highest mAP among the models targeted for real-time processing

Feature extractor:
*  The accuracy of the feature extractor impacts the detector accuracy, but it is less significant with SSD.

Obiject size:

*  For large objects, SSD performs pretty well even with a simple extractor. SSD can even match other
detectors’ accuracies using better extractor. But SSD performs worse on small objects compared to
other methods.

Input image resolution

* Higher resolution improves object detection for small objects significantly while also helping large
objects. Decreasing resolution by 2x in both dimensions lowers accuracy, but the inference time is
also reduced by 3x.

Memory usage
*  MobileNet has the smallest RAM footprint. It requires less than 1Gb (total) memory.




SSD-MobileNet Detection Quality

* Input size: 640x360

*  Detection quality for classes
(AP@0.5I0UV):
— Light vehicle — 0.52
—  Truck/bus —0.36
—  Cyclist/motorcyclist — 0.255
— Pedestrian —0.288




SSD-MobileNet Inference Performance

Desktop platform (PC) Reference platform — Nvidia Jetson TX2
*  Dual-core NVIDIA Denver2

*  Quad-core ARM Cortex-A57

* 8GB 128-bit LPDDR4

e 256-core Pascal GPU (max freq)

Quad-core Intel Core i5-7400
* 16 GBDDR4
* GeForce GTX 1060 (6 Gb)

* CUDA 8.0, CuDNN 6, TensorFlow v1.5 - CUDA 8.0, CuDNN 6, TensorFlow v1.5
resolution (ms/frame) (ms/frame)
1280x720 49.55 185.0
853x480 26.3 84.87
640x360 15.7 56.21
427x240 8.25 32.51

Table — Inference performance



DNN Inference Speedup. ROI

*  Challenge: reducing input horizontal
resolution under 640p resulted in serious
decrease of narrow object accuracy (e.g.
pedestrians)

*  Solution: reduce ROI further only by
height, remove small objects from training

— Most road objects occupy center half of
the frame

— Use dynamic frame crop by horizon level

— SSD can deal with truncated/occluded
closer large objects




DNN Inference Speedup. Model Depth

*  MobileNet provides two hyper parameters
— width multiplier, resolution multiplier
*  The role of the width multiplier a is to thin a network uniformly at each layer
* Solution: decrease the width multiplier to thin the network and remove redundant

convolutions
— width multiplier 0.75 was chosen for current road objects dataset

Width Multiplier ImageNet Acc (%) Multiply-Adds (M)
(alpha)

1.0 MobileNet-224 70.6

0.75 MobileNet-224 68.4 325 2.6
0.50 MobileNet-224 63.7 149 1.3
0.25 MobileNet-224 50.6 41 0.5

Table — MobileNet accuracy vs width multiplier on ImageNet dataset



DNN Inference Speedup. Runtime

Runtime and driver update
— From: CUDA 8.0 + cuDNN 6
— To: CUDA 9.0 + cuDNN 7
Utilizing low level optimization efforts from specialized libraries

Performance upgrade at low development cost

Input image TX2 CUDA 8 TX2 CUDA 9

resolution (ms/frame) (ms/frame)

640x360 56.2 54.5 +3.1%

Table — Runtime performance comparison




SSD-MobileNet Optimized Performance

* Input size: 640x360 * New input size: 640x180
* Detection quality for classes *  Width multiplier: 0.75
(AP@0.510U): «  Detection quality for classes
—  Vehicle —0.52 (AP@0.510U):
— Pedestrian —0.283 —  Vehicle — 0.6891 (small obj removed)

—  Pedestrian —0.2902

Input image Width TX2 CPU TX2 GPU CPU/GPU
resolution Multiplier inference inference speedup
(alpha) (ms/frame) (ms/frame)
640x360 1.0 262 56.2 4.66x
640x180 0.75 115.5 30.3 3.81x

Table — Final performance comparison




Inference Acceleration. Hardware

FPGA \.«/

e high o e performance per e Int8 quantization
throughput(up to watt e DNN-inference-
33x CPU) e low precision specific CISC

e lower latency (up types instruction set
to 31x CPU) e sparsity e massively parallel

e cuDNN matrix processor

e FP16 e minimal

deterministic
design



Inference Acceleration. Model Compression ©

® remove ® binning e weight
weights below e weight distributions
threshold sharing are biased

e retrain e AlexNet: 3x e AlexNet: ~25%

e AlexNet: 10x Size compression

less params compression




Future Work and Conclusions



Ongoing Work. Lane Markings Detection

*  Low level invariant features
— Single camera
— Stereo data
— Point clouds
e Structural analysis
*  Probabilistic models
— Real-world features
—  Physical objects
— 3D scene reconstruction
— Road situation

* 3D space scene fusion
(different sensors input)

*  Backward knowledge
propagation from high levels




Ongoing Work. More Detection Classes

* Road object classes extension
(without a loss of quality for existing classes)

— Adding traffic signs recognition (detector + classifier)

— Adding traffic lights recognition




Ongoing Work. Drivable Area Detection

* Drivable area detection using semantic segmentation
*  Model is inspired by Squeeze-net and U-Net.

* Current performance (Jetson TX2):
— Input size: 640x320 (lowres)
— Inference speed: 75 ms/frame




Safety and Autonomous Vehicles

Algorithms Software Hardware

\—'—I\—'—I

Safety of the intended
functionality Road vehicles — Functional safety
(SOTIF ISO/PAS 21448, (1ISO 26262, published)
published)




Augmented Guidance Demo Application




Conclusions

Besides the DNN architecture, many aspects impact the performance of object detectors
— Model specific: feature extractor, input resolutions, matching strategy, loU threshold
— Data specific: training data, augmentation
SSD with MobileNet provides the best accuracy tradeoff within the fastest detectors
— SSD s fast but performs worse for small objects comparing with others
— For large objects, SSD can outperform other meta architectures with lighter extractors
Higher detection frame rates with lower accuracy (mAP) are better for consistent object
tracking
— Lower latency (better estimation of real time position)
— High refresh (smooth tracking)

GPU computing capabilities and solid library optimization enable real time perception for
complex recognition models

Full road object coverage will require more computing power from next generation
embedded PCs
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