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Company Introduction



Unique augmented reality in the vehicle

Ultimately easy and safe driving

Full visibility of autonomous driving decisions

Headquarters in Munich 

Development centers in Eastern Europe, 

presence in Asia

50+ experienced and talented engineers in 

4 countries

10+ years of automotive experience

Know-how in core automotive domains:

Vehicle Infotainment, Vehicle Sensors and 

Networks, Telematics, Advanced Driver 

Assistance Systems, Navigation and Maps,

Collaboration with scientific groups in fields 

of Computer Vision and Machine Learning, 

unique IP and mathematical talents

Company Introduction



Technology



Challenges of ADAS Embedded Platforms

• Power vs Performance

– Focus on performance while presuming the low power consumption

• Low latency and High response frequency

– Fast responses to environment changes are crucial for working in real-time

• Robustness and Quality

– Ensure robustness and presume quality in difficult operating conditions

– Requires a lot of verification scenarios as well as adaptive heuristics

• System architecture specifics for embedded real-time

– Designed for real-time requirements and portability to fit to most effective hardware platforms

• Hardware and software sensor fusion

– Fuse available data sources (sensors, maps, etc.) for robustness and quality

• Big data analysis

– Huge amount of data should be stored and used for development and testing

• In- and Off-field automated testing

– Adaptive heuristics development

– System validation

– Collecting special cases



Challenges of ADAS Machine Learning

• Machine Learning needs large volumes of quality data

– Real need to ensure greater stability and accuracy in ML

– High volumes of data might not be available for some tasks,
limiting ML’s adoption

• AI vs Expectations

– Understanding the limits of technology

– Address expectations of replacing human jobs

• Becoming production-ready

– Transition from modeling to releasing production-grade AI solutions

• Current ML doesn’t understand context well
– Increased demand for real-time local data analysis

– A need to quickly retrain ML models to understand new data

• Machine Learning security

– Addressing security concerns such as informational integrity



System Concept



Apostera Approach. High Level and Highlights

Figure – System architecture overview



Apostera Approach. High Level and Highlights

• Hardware agnostic

• Vehicle sensors agnostic

• Confidence estimation of fusion/visualization

• Real-time with low resource consumption

• Latency compensation and prediction model

– Pitch, roll, low- and high-frequency

• Configurable design for different OEMs

• Configurable logic requirements

(including models and regions)

– User interface logic considers confidence or 

probability of input data

– Considers the dynamic environment and objects 

occlusion logic

• Integration with different navigation systems 

and map formats

– Compensation of map data inaccuracy

– Precise relative and absolute positioning



Cameras. Transport and Sensors

ADAS camera challenges

Reduced heat improves image quality & reliability

Battery applications

Demand for algorithms reaction time 

Resolving data source synchronization issue

Harsh environment

Passenger and industrial vehicles

Demand for increasing number of ADAS sensors

Increasingly space constrained

Low

latency

Small 

footprint

Low power

High

Reliability

IP / ETH AVB / GMSL transport comparison

serializer LVDS deserializerline exposure

Encoder ETH AVB decoder
Frame 

exposure

encoder IP transmit decoder
Frame 

exposure

45μs 15μs (per line)

33 ms 1 ms 2 ms 1 ms

~37ms

~33ms

~105ms

33 ms 1 ms 70 ms 1 ms

Supplier

Type

Aptina

AR0130

Aptina

AR0231

Omnivision

OV 10635

Resolution pixel 1280x960 1928x1208 1280x800

Dynamic dB 115 (HDR) 120(HDR) 115(HDR)

Response
V/L-

sec
5.48 - 3.65

Frames fps 60 40 30

Shutter Type
GS/ER

S
ERS ERS ERS

Sensor optical 

format

Inch 

(“) 1/3” 1/2.7” 1/2.7”

Pixel size µm 3.75 3 4.2

Interface
Parallel 

RGB
MIPI CSI2 Parallel DVP

Application ADAS ADAS ADAS

Operation 

temp.
°C -40...+105 -40...+105 -40...+105

Table – camera sensors comparison



Data Preparation



Data Preparation. Public Datasets

Desired road object classes:

• Vehicle

• Large Vehicle (Truck/Bus)

• Pedestrian

• Cyclist / motorcyclist

• Traffic sign

• Traffic light

Figure – Public dataset samples

General road scene annotations:

• Time of day

• Weather type

• Street type

• Country

Public datasets for object detection:

• Different annotation formats and classes

• Noncommercial use or after agreement

• Good for quick prototyping



Data Preparation. Simulation 

Figure – SYNTHIA and VirtualKITTI datasets

Pros Cons

Faster development cycles Limited physical, perceptual fidelity

Easy scalability Limited behavioral fidelity

Controllability, reproducibility Flexible, but not standardized

Easy data collection (inc. corner cases)



Data Preparation. Real and Simulated Data

Ground truth data sources:

• Raw driving data

‒ 100x hours of in-field testing

‒ Challenging manual or semi-automatic 
labeling

‒ Hard to reuse after setup changes

• Simulated data

‒ Fast automatic labeling

‒ Special cases are easier to collect

‒ Possible issues with real world 
deployment

• Data augmentation

‒ Flip, crop, color changes

‒ Quick dataset extension

‒ Prevents model from irrelevant 
patterns, improves robustness

Figure – Raw vs simulated data



Object Detection DNN Showcase



Object Detection DNNs. Speed vs Accuracy

Figure – Accuracy (mAP) vs inference time of different meta architecture / feature 

extractor combinations for MS COCO dataset



Single Shot Multibox Detector

• Discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and

scales per feature map location

• Generates scores for the presence of each object category in each default box and produces adjustments

to the box to better match the object shape

• Combines predictions from multiple feature maps with different resolutions to handle various sizes

• Simple relative to methods that require object proposals, eliminates proposal generation and subsequent

pixel or feature resampling stages, encapsulates all computation in a single network

Figure – SSD model architecture



MobileNet as a Feature Extractor

• Streamlined architecture that uses depthwise separable convolutions to build light

weight deep neural networks

• Uses two global hyper parameters to adjust between latency and accuracy

• Strong performance compared to other popular models on ImageNet classification

• Effective across a wide range of applications and use cases

• object detection

• fine grain classification

• face attributes

• large scale geo-localization



MobileNet Architecture. Convolution Block

Figure - Depthwise separable convolution block



MobileNet Architecture

Figure – MobileNet architecture



SSD-MobileNet Qualities

• Speed vs Accuracy:

• SSD on MobileNet has the highest mAP among the models targeted for real-time processing

• Feature extractor:

• The accuracy of the feature extractor impacts the detector accuracy, but it is less significant with SSD.

• Object size:

• For large objects, SSD performs pretty well even with a simple extractor. SSD can even match other 

detectors’ accuracies using better extractor. But SSD performs worse on small objects compared to 

other methods.

• Input image resolution

• Higher resolution improves object detection for small objects significantly while also helping large 

objects. Decreasing resolution by 2x in both dimensions lowers accuracy, but the inference time is 

also reduced by 3x.

• Memory usage

• MobileNet has the smallest RAM footprint. It requires less than 1Gb (total) memory.



SSD-MobileNet Detection Quality

• Input size: 640x360

• Detection quality for classes 

(AP@0.5IOU):

‒ Light vehicle – 0.52

‒ Truck/bus – 0.36

‒ Cyclist/motorcyclist – 0.255

‒ Pedestrian – 0.288



SSD-MobileNet Inference Performance

Desktop platform (PC)

• Quad-core Intel Core i5-7400

• 16 GB DDR4

• GeForce GTX 1060 (6 Gb)

• CUDA 8.0, CuDNN 6, TensorFlow v1.5

Input image

resolution

PC GPU inference

(ms/frame)

TX2 GPU inference 

(ms/frame)

1280x720 49.55 185.0

853x480 26.3 84.87

640x360 15.7 56.21

427x240 8.25 32.51

Reference platform – Nvidia Jetson TX2

• Dual-core NVIDIA Denver2 

• Quad-core ARM Cortex-A57

• 8GB 128-bit LPDDR4

• 256-core Pascal GPU (max freq)

• CUDA 8.0, CuDNN 6, TensorFlow v1.5

Table – Inference performance



DNN Inference Speedup. ROI

• Challenge: reducing input horizontal 

resolution under 640p resulted in serious 

decrease of narrow object accuracy (e.g. 

pedestrians)

• Solution: reduce ROI further only by 

height, remove small objects from training

‒ Most road objects occupy center half of 

the frame

‒ Use dynamic frame crop by horizon level

‒ SSD can deal with truncated/occluded 

closer large objects



DNN Inference Speedup. Model Depth

• MobileNet provides two hyper parameters

‒ width multiplier, resolution multiplier

• The role of the width multiplier α is to thin a network uniformly at each layer
• Solution: decrease the width multiplier to thin the network and remove redundant 

convolutions

‒ width multiplier 0.75 was chosen for current road objects dataset

Width Multiplier 

(alpha)

ImageNet Acc (%) Multiply-Adds (M) Params (M)

1.0 MobileNet-224 70.6 529 4.2

0.75 MobileNet-224 68.4 325 2.6

0.50 MobileNet-224 63.7 149 1.3

0.25 MobileNet-224 50.6 41 0.5

Table – MobileNet accuracy vs width multiplier on ImageNet dataset



DNN Inference Speedup. Runtime

• Runtime and driver update

‒ From: CUDA 8.0 + cuDNN 6

‒ To: CUDA 9.0 + cuDNN 7

• Utilizing low level optimization efforts from specialized libraries

• Performance upgrade at low development cost

Input image

resolution

TX2 CUDA 8 

(ms/frame)

TX2 CUDA 9 

(ms/frame)

Speedup

640x360 56.2 54.5 +3.1%

Table – Runtime performance comparison 



SSD-MobileNet Optimized Performance

• Input size: 640x360

• Detection quality for classes 

(AP@0.5IOU):

‒ Vehicle – 0.52

‒ Pedestrian – 0.288

Input image

resolution

Width 

Multiplier 

(alpha)

TX2 CPU 

inference 

(ms/frame)

TX2 GPU 

inference 

(ms/frame)

CPU/GPU 

speedup

640x360 1.0 262 56.2 4.66x

640x180 0.75 115.5 30.3 3.81x

Table – Final performance comparison 

• New input size: 640x180

• Width multiplier: 0.75

• Detection quality for classes 

(AP@0.5IOU):

‒ Vehicle – 0.6891 (small obj removed)

‒ Pedestrian – 0.2902



Inference Acceleration. Hardware

GPU

• high 
throughput(up to 
33x CPU)

• lower latency (up 
to 31x CPU)

• cuDNN

• FP16

FPGA

• performance per 
watt

• low precision 
types

• sparsity

TPU

• Int8 quantization

• DNN-inference-
specific CISC 
instruction set

• massively parallel 
matrix processor

• minimal 
deterministic 
design



Inference Acceleration. Model Compression

Network 
pruning

• remove 
weights below 
threshold

• retrain

• AlexNet: 10x 
less params

Quantization

• binning

• weight 
sharing

• AlexNet: 3x 
size 
compression

Huffman coding

• weight 
distributions 
are biased

• AlexNet: ~25% 
compression



Future Work and Conclusions



Ongoing Work. Lane Markings Detection

• Low level invariant features

‒ Single camera

‒ Stereo data 

‒ Point clouds

• Structural analysis

• Probabilistic models

‒ Real-world features 

‒ Physical objects

‒ 3D scene reconstruction

‒ Road situation

• 3D space scene fusion 

(different sensors input)

• Backward knowledge 

propagation from high levels



Ongoing Work. More Detection Classes

• Road object classes extension

(without a loss of quality for existing classes)

– Adding traffic signs recognition (detector + classifier)

– Adding traffic lights recognition



Ongoing Work. Drivable Area Detection

• Drivable area detection using semantic segmentation

• Model is inspired by Squeeze-net and U-Net.

• Current performance (Jetson TX2):

– Input size: 640x320 (lowres)

– Inference speed: 75 ms/frame



Safety and Autonomous Vehicles

Algorithms Software Hardware

Safety of the intended 

functionality

(SOTIF ISO/PAS 21448,

published)

Road vehicles – Functional safety

(ISO 26262, published)



Augmented Guidance Demo Application



Conclusions

• Besides the DNN architecture, many aspects impact the performance of object detectors

‒ Model specific: feature extractor, input resolutions, matching strategy, IoU threshold 

‒ Data specific: training data, augmentation

• SSD with MobileNet provides the best accuracy tradeoff within the fastest detectors

‒ SSD is fast but performs worse for small objects comparing with others

‒ For large objects, SSD can outperform other meta architectures with lighter extractors

• Higher detection frame rates with lower accuracy (mAP) are better for consistent object 

tracking

‒ Lower latency (better estimation of real time position)

‒ High refresh (smooth tracking)

• GPU computing capabilities and solid library optimization enable real time perception for 

complex recognition models

• Full road object coverage will require more computing power from next generation 

embedded PCs
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